BCMaterials Fortnightly Seminars #14

[break]
“Permalloy nanodisks prepared by colloidal lithography for biomedical applications”
Maite Goiriena
Magnetic nanoparticles are extensively studied for biomedical applications because their size are comparable to biological entities, while providing remote capabilities of actuation. Disk shaped ferromagnetic nanostructures display an attractive alternative to chemically-synthetized oxide nanoparticles that are used normally. First, Permalloy (Py) nanodisks display much higher saturation magnetization and second, with the appropriate dimensions, they can present a spin vortex magnetic configuration, which leads to net zero magnetization at remanence, eliminating the problem of particle agglomeration. Therefore, Py nanodisks present a huge potential for biomedical applications, ranging from cancer cell destroy by hyperthermia or mechanical actuation to MRI contrast enhancement and drug delivery. In fact, micrometric disks has been shown to produce cell apoptosis by their mechanical oscillation under a low ac field. Disks in the nanometer scale might cross cell membrane expanding the biomedical possibilities.
The fabrication methods of nanostructures such as electron beam lithography or deep UV photolithography offer a high control on particle size and geometry, but they imply either a very low yield production or the use of state of the art and expensive equipment. As a satisfactory alternative, self-assembling routes provide high volume and low cost production of Py nanodisks. In this work we demonstrate the excellent capabilities of Hole-mask Colloidal Lithography (HCL) to produce high quality Py nanodisks with a yield adequate for biomedical applications (several micrograms per cm2, approximately 1 miligram in a 2´´ wafer).
The parameters of HCL process allow to obtain Py nanodisks with different dimensions controlling a well-defined magnetic vortex state. Effective procedures for releasing the fabricated nanodisks from the substrate are under development, which will permit in vitro biomedical experiments.
“Nanocellulose for flexible electronics” Eduardo FernándezSummary The main objective of this investigation is to use the cellulose as substrate for electronics. The cellulose when crystalizes is opaque, however can be fabricated in a manner where are crystalized clusters with different grain sizes. In this case the cellulose is transparent. We characterize the structural properties and its dielectrical properties of the cellulose for flexible electronic applications.
Related news
Omar Yaghi Awarded Nobel Prize in Chemistry
Professor Omar M. Yaghi, who served as a member of the BCMaterials International Advisory Committee until recently, has been awarded the Nobel Prize in Chemistry on Wednesday, October 8, in…Invited Talk with César Fernández Sánchez (October, 7)
On October 7th, starting at 11:00 a.m., BCMaterials will host a new invited talk. This time, the keynote speaker will be César Fernández Sánchez, a researcher at the Barcelona Institute of…Invited Talk with Akio Kimura (October 3)
BCMaterials is proud to host Akio Kimura, Professor at the Graduate School of Advanced Science and Engineering of the Hiroshima University (Japan) in a new invited talk. The event will take place on…BCMaterials to Launch Four New Projects Under the ‘ Generación del Conocimiento’ program
BCMaterials will develop four new research projects within the ‘Generación del Conocimiento’ (Knowledge Generation) program, funded by the Spanish Ministry of Science, Innovation, and Universities.…