BCMaterials Fortnightly Seminar #77 Irati Rodrigo - Arkaitz Fidalgo

IRATI RODRIGO
(BCMATERIALS)
Design and assembly of an electromagnetic applicator for magnetic hyperthermia experiments
Magnetic hyperthermia is a cancer therapy, where magnetic nanoparticles (MNP) placed inside the tumour act as heat sources activated by an externally applied magnetic field. These nanoparticles increase the temperature of the tumour cells causing the destruction of the tumour. One of the most important parameters of MNP used in magnetic hyperthermia is their specific absorption rate (SAR), which is the absorbed energy per unit of nanoparticle mass. Our group has developed an accurate AC magnetometer, which allow the quantification of SAR. This magnetometer calculates the SAR measuring the dynamic magnetization with two pick up coils. SAR is obtained from the integral of the dynamic magnetization vs the applied magnetic field (generated by an inductor). This AC magnetometer works in a wide frequency range of AC magnetic field (149–1030 kHz) and with large field intensity: up to 35 kA m−1 at low frequencies and up to 22 kA m−1 at high frequencies (above 1 MHz). The main aim of this these is to design and built a new AC magnetometer that will work in higher field intensities and add a temperature controller of the sample. This will allow us to measures SAR in different temperature, which is very important to study new non invasive thermometry methods in order to measure the temperature of the tissue during the treatment. The update of the AC magnetometer that I am building will be shown and the steps followed to do the design will be explained.ARKAITZ FIDALGO
(BCMATERIALS)
Metalloporphyrin based Solid Coordination Frameworks: mimicking the natural properties
Metalloporphyrins are paradigmatic examples of the great efficiency of these natural systems in photosynthesis, oxygen transport, electron carrier and catalytic reactions, and supramolecular entities based on self-assembly of metalloporphyrins are able to mimic those properties. During the last years Solid Coordination Frameworks (SCFs) based on metalloporphyrins have succeeded in catalyzing various reactions. In this sense, our research group is exploring the using metalloporphyrins, both as structural units of the SCFs and as heterogeneous catalysts. The work herein present correspond to the heterogeneous catalytic activity of the m-O-[FeTCPP]2·16DMF (TCPP= meso-tetracarboxyphenylporphyrin, DMF= N,N-dimethylformamide) compound towards the aldol and Knoevenagel condensations and multiphase one-pot cascade reactions. The quickly obtained high conversion rates and high turnover frequencies (TOF) for some of the tested reactions indicate the effectiveness of this metalloporphyrin based heterogeneous catalyst.Related news
Succesful joint symposium with Instituto Biofisika
On June, 19 we hosted the ‘Processes and Materials for Life’ symposium, organized jointly with Instituto Biofisika. The goal of the symposium was to share the common knowledge of both centers on…‘Materials for Society’. Talk and Discussion with Jorge García del Arco
On June 18th, starting at 11:00 a.m., in the Martina Casiano Auditorium in Leioa, BCMaterials launches a new chapter of ‘Materials for Society’—an initiative that bridges science with art, culture,…Interview with Maibelin Rosales on 'STEMlab Podcast'
Our Marie Curie postdoctoral researcher, Maibelin Rosales, is one of the featured speakers in the 'STEMlab Podcast' series, promoted by Diputación Foral de Bizkaia’s BizkaiaTech. The goal of these…Visit of the BCMaterials Local Advisory Committee
On June 3rd, we received a visit from members of the BCMaterials Local Advisory Committee, one of our center's advisory bodies on scientific matters. The purpose of the meeting was for the Committee…