BCMaterials Fortnightly Seminar #58: Irati Rodrigo & Vasileios Alexandrakis

BCMaterials Fortnightly Seminar #58: Irati Rodrigo & Vasileios Alexandrakis

IRATI RODRIGO

(BCMATERIALS)

The design of a new AC magnetometer

Magnetic hyperthermia is a cancer therapy, where magnetic nanoparticles (MNP) placed inside the tumour act as heat sources activated by an externally applied magnetic field. These nanoparticles increase the temperature of the tumour cells causing the destruction of the tumour. One of the most important parameters of MNP used in magnetic hyperthermia is their specific absorption rate (SAR), which is the absorbed energy per unit of nanoparticle mass. Our group has developed an accurate AC magnetometer, which allow the quantification of SAR. This magnetometer calculates the SAR measuring the dynamic magnetization with two pick up coils. SAR is obtained from the integral of the dynamic magnetization vs the applied magnetic field (generated by an inductor). This AC magnetometer works in a wide frequency range of AC magnetic field (149–1030 kHz) and with large field intensity: up to 35 kA m−1 at low frequencies and up to 22 kA m−1 at high frequencies (above 1 MHz). The main aim of this these is to design and built a new AC magnetometer that will work in higher field intensities and add a temperature controller of the sample. This will allow us to measures SAR in different temperature, which is very important to study new non invasive thermometry methods in order to measure the temperature of the tissue during the treatment. Two new AC magnetometers have been designed and studied for this purpose. I have simulated the magnetic field and dissipated power of the inductor using Finite element method (FEM) variating the parameters of the inductor, and analysing the result I have choose the best design with the optimal parameters.  

VASILEIOS ALEXANDRAKIS

(UPV/EHU - Dept. of Electricity and Electronics, ZTF-FCT)

“Hard/Soft” magnetic composites for magnetic recording applications

Hard disk drives (magnetic storage) for ultra-high storage densities require small grain sizes to fulfil the requirements for high signal to noise ratios. However, as the grains become too small, the bits are no longer magnetically stable. The reduction of grain size can be balanced by a large magnetocrystalline anisotropy K. Nevertheless, recording media based on highly magnetocrystalline anisotropy grains, like FePt, require a write (switching) field that is higher than the provided field by current write heads: it is the so-called writability issue. Hard/Soft” magnetic composites for high density recording were theoretically proposed to overcome the writability issue. Magnetic composites consist of two layers, one of which (“hard”) possesses high magnetocrystalline anisotropy (K), while the other (“soft”) layer has low anisotropy. The soft magnetic layer reduces the switching field and the hard magnetic layer preserves the thermal stability. Different “hard/soft” magnetic composites and the corresponding magnetization switching mechanisms will discussed.

Related news

See all news
  • Eric Hill, New Ikerbasque Research Associate Professor

    News

    We are glad to welcome Eric H. Hill as a new Ikerbasque Research Associate Professor at BCMaterials. Eric obtained a B.S. in Chemistry at Southern Oregon University in 2009, and a Ph.D. at the…
  • Three New Post-Doc Researchers Join BCMaterials

    News

    We want to give our warmest welcome to Paola Zimmermann Crocomo, Diana Cabrosi and Francisco Peralta, who joined BCMaterials as post-doctoral researchers, under the Basque Government’s IKUR strategy…
  • Invited Talk with Raynald Gauvin (July, 16)

    Events

    On July 16, starting at 11:00 a.m., in the auditorium of the Martina Casiano Building (BCMaterials headquarters), we will host an invited talk by Professor Raynald Gauvin from the Department of…
  • A Week Dedicated to Quantum Dots at BCMaterials

    Events

    From June 30th to July 2nd, BCMaterials hosted the second workshop of the MSCA doctoral network "Track the Twin," of which our center is a member. This European project aims to enhance the…