Emergent Piezoelectric Materials: structure, properties, applications

Emergent Piezoelectric Materials: structure, properties, applications A. Kholkin and S. Kopyl 1Physics Department and CICECO – Aveiro Institute of Materials, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
Emails: kholkin@ua.pt, svitlanakopyl@ua.pt
Recent studies revealed several new classes of piezoelectrics including 2D materials (graphene) [1] and biomolecular crystals (self-assembled peptides, amino acids, nucleotides) [2-4]. Piezoelectricity in these occurs because of symmetry breaking on the surface in the first case and presence of highly anisotropic hydrogen bonds in the second. Graphene in contact with oxides offers extremely high piezoelectric activity due to polarity of C-O bonds, while peptide nanotubes (PNTs) demonstrate remarkable electromechanical properties (similar to ZnO or LiNbO3) due to molecular self-assembly and intrinsic softness of directed hydrogen bonds formed in these materials. Remarkably stable structure, possibility of functionalization together with biocompatibility and easy synthesis and nanofabrication, make graphene, PNTs and other biomolecular crystals (e.g. amino acid glycine [3,4]) attractive alternatives to traditional lead-based piezoelectrics. In this presentation, the mechanisms of piezoelectric effect in these structures will be discussed and methods for their studies will be introduced. Novel method of Hybrid Piezoresponse Force Microscopy (Hybrid-PFM) will be presented allowing measuring piezoelectric properties in nanomaterials during the acquisition of force-distance curves [5]. The seminar will then discuss the results of our recent studies on the growth and characterization of PNTs as well as on the fabrication of large and stable peptide microtubes (PMTs) allowing their use in microdevices. The mechanisms of strong piezoelectricity, pyroelectricity and dielectric relaxation in PNTs and PMTs will be proposed. Low temperature phase transitions observed in these materials will be discussed in detail. Several anomalies found in the temperature range 100-350 K will be attested to the crucial role of nanoconfined water in the internal cavities of PNTs. Recent results on piezoelectricity and pyroelectricity in PNTs show that they are very attractive for various applications in biomedicine, because of their intrinsic biocompatibility combined with mesoporous structure and ability to work in direct contact with living cells and biological liquids. Scaling of piezomaterials down to nanosize is expected to dramatically improve their performance, thus making piezoelectric nanodevices much more sensitive than the traditional ones. The examples of these applications will be presented.
References [1] G. da Cunha et al. Nat. Commun. 6, 7572 (2015). [2] A. L. Kholkin et al. ACS Nano 4, 610 (2010). [3] S. Guerin et al. Nature Mater. 17, 180 (2018). [4] E. Seyedhosseini et al. ACS Appl. Mat. Interfaces 9, 20029 (1917). [5] A. Kalinin et al. Ultramicroscopy 185, 249 (2018).
BIO

Related news
A Week Dedicated to Quantum Dots at BCMaterials
From June 30th to July 2nd, BCMaterials hosted the second workshop of the MSCA doctoral network "Track the Twin," of which our center is a member. This European project aims to enhance the…Ana Jiménez Amaya, New Pre-Doctoral Researcher
We would like to welcome Ana Jiménez Amaya as a new predoctoral researcher at BCMaterials. She joins our center to work on the area of micro- and nanostructured materials, with a particular focus on…BCMaterials IT Department Grows with Mikel Asurmendi’s Arrival
The sustained growth of BCMaterials' research staff is complemented by an increase in the center's support personnel. Specifically, the IT department welcomes a new technical assistant: Mikel…Training Future Professionals in Functional Printing
From June 25 to 27, BCMaterials hosted a specialized course on functional printing, organized in collaboration with the Functional Print Cluster. The course brought together nearly 40 participants…