BCMaterials Fortnightly Seminars #35
ADRIANA HUÍZAR
(UPV/EHU)
MAGNETIC ANISOTROPY IN ASSEMBLIES OF MAGNETITE NANOPARTICLES EXTRACTED FROM MAGNETOTACTIC BACTERIA MAGNETOSPIRILLUM GRYPHISWALDENS
Self-assembly is the autonomous organization of components into patterns and structures due to balance between electrostatic forces, surface tension, entropy, substrate affinity and size, shape and concentration of the particles.1 In addition, the self-assembly process in magnetic materials is also related with intrinsic exchange coupling energy, anisotropy energy and dipolar interactions. The magnetic interaction becomes then an important issue, dominating the collective magnetic behavior. In this work, we carried out a magnetic study on assemblies of magnetite nanoparticles biomineralized by magnetotactic bacteria Magnetospirillum gryphiswaldense2, called magnetosomes. These magnetosomes are magnetite nanoparticles surrounded by a lipid bilayer with a thickness ≈ 2 - 4 nm, present truncated-cuboctahedral shape and a mean diameter of ≈ 36 nm. The magnetosomes were deposited by drop coating technique under an applied magnetic field ≈ 0.4 T, onto silicon substrate for magnetic measurements, and on top of a grid covered by amorphous carbon for Transmission Electron Microscopy image (figure 1a) and Off-axis Electron Holography to map the magnetic field of the nanoparticle assemblies (figure 1b). The magnetosomes are arranged in wide bands forming large strings in the direction of the applied magnetic field and covering a big area of the substrate. The hysteresis loops of the linear patterns were measured by Magneto-optical Kerr Effect (MOKE) magnetometer at different angles with respect to the applied magnetic field direction (figure 1c). Magnetization rotation of particles under the external magnetic field oriented at different angles matches well with the simulations. The evolution of the coercive field and remanence verified the presence of well-defined patterns.
1Varón, L. Peña, L. Balcells, V. Skumryev, B. Martinez, V. Puntes, Langmuir, 2010, 26, 109-116. 2L. Fdez-Gubieda, A. Muela, J. Alonso, A. Garcia-Prieto, L. Olivi, R. Fernandez-Pacheco, J. M. Barandiarán, ACS Nano, 2013, 7, 3297-3305.
![]() ![]() ![]() |
XABIER LASHERAS
(BCMaterials)
UNDERSTANDING THE IMPACT OF MAGNETIC NPS AND NANOCAPSULES UPON A SIMPLIFIED IN VITRO MODEL OF THE HUMAN BLOOD VESSEL
One of the most important research areas nowadays is focused on developing and testing different kind of nanomaterials, as magnetic, gold and polymeric nanoparticles, to be applied as therapeutic mediators to treat different kind of cancer. In the specific case of magnetic nanoparticles, the main objective is to develop a mechanism to treat the cancer by the magnetic hyperthermia effect of these nanoparticles. In this way, a lot of previous work has been performed to obtain magnetic nanoparticles with high saturation magnetization and magnetic anisotropy, in order to achieve an optimum response in magnetic hyperthermia treatments. However, to consider the obtained nanomaterials suitable candidates for biomedical applications, some tests have to be previously performed. In order to check the possibility to use some nickel ferrite based nanomaterials in humans, the effects of some magnetic nanomaterials in a simplified in vitro model of the human blood vessel have been tested. This model is based on a endothelial cell-macrophage co-culture, which simulates the structure and the contact of real human blood vessel with the blood. The aim of this project is to check the effects that the intravenous injections of nanoparticles could produce in the blood vessels. This work has been carried out based on the method and model developed in the Adolphe Merkle institute (Fribourg, Switzerland) under the supervision of Dr. Martin J. D. Clift, Dr. Alke Fink and Dr. Barbara Rothen-Rutishauser.Related news
Charla invitada con investigadores del Instituto de Microelectrónica de Barcelona (3 de diciembre)
El próximo 3 de diciembre, a partir de las 12:00 en el auditorio Martina Casiano de Leioa, BCMaterials recibirá a los investigadores titulares del Instituto de Microelectrónica de Barcelona (IMB-CNM...Charla invitada con Liu Yao sobre baterías de metal-litio (2 de diciembre)
El próximo lunes 2 de diciembre, Liu Yao, profesor del Shanghai Institute of Applied Physics presentará una charla invitada en BCMaterials titulada ‘Li Metal Batteries: From Liquid to Solid-State’....Éxito del workshop anual de BCMaterials, dedicado a materiales críticos
La exitosa edición 2025 del workshop anual de BCMaterials reunió el pasado 19 de noviembre en Leioa a un centenar de asistentes para examinar el estado del arte y debatir sobre los materiales...Eudomar Henríquez, autor del ‘Artículo GEFES del año’
Queremos dar nuestra más sincera enhorabuena a nuestro investigador postdoctoral Eudomar Henríquez por ser el autor del ‘Artículo GEFES del año 2024-2025’, seleccionado por la División de Física de...


