BCMaterials Fortnightly Seminar #83 Manuel Salado - Virginia Vadillo
MANUEL SALADO
(BCMATERIALS)
Introduction to Perovskite solar cells
In recent years, perovskite solar cells (PSCs), has stunned the PV field, by the tremendous research interest owing to their unique combination of high performance and low-cost fabrication process. Compared with the existing technology, PSCs have demonstrated its potential by establishing an unprecedented increment in the PCE from 3.8% to >22.7% (http://www.nrel.gov/ncpv/) in almost one decade. Despite considerable and successful research efforts to increase the PCE, relatively little progress has been made towards increasing the stability of these materials. Different strategies, such as crosslinking, doping, shielding with molecularly designed materials or enveloping the perovskite molecular structure in a foreign chemical environment, have been reported for improved humidity and UV-induced degradation. However, increases in stability generally result in reduced PCEs. The problem of stability was partially overcome with the use of mixed perovskites, but these materials still cannot fulfil the commercial requirements. On the other hand, the microstructure and phase purity of the films rely on the perovskite formation processes. A variety of different deposition techniques have been used with the aim to achieve high quality perovskite layer, such as, two step (sequential deposition), vacuum evaporation, vapour-assisted deposition or recently solvent engineering approach. In this talk, an introduction of the properties, deposition and characterization techniques of perovskite solar cell will be explained.
VIRGINIA VADILLO
(BCMATERIALS)
High magnetization nanoparticles for magnetorheological fluids application
The aim of this project is to prepare nanoparticles with high saturation magnetization to develop magnetic fluids with high magnetorheological effect. FeCo nanoparticles present the highest magnetization known. However, they are very reactive and they can form aggregates. It will be employed chemical and physical methods to synthetize stable FeCo nanoparticles. Sol-gel, hydrothermal and polyol will be used as chemical methods and ball milling and laser bombing as physical methods. The shape, size and the structure of the nanoparticles will be measured with SEM, EDX and XRD. The magnetic properties will be studied by means of VSM. The most interesting nanoparticles will be employed for the magnetorheological fluids.
Related news
Proteina artifizialak gailu energetiko azkar, jasangarri eta biobateragarrietarako
CIC biomaGUNE, BCMaterials eta CIC energiGUNE euskal ikerketa-zentroetako ikertzaileek proteina-mota bat aldatzea lortu dute elektrizitatea garraiatzeko eta biltegiratzeko gaitasuna izan dezaten.…Material kritikoak BCMaterialsen urteko workshop-aren protagonistak
Datorren azaroaren 19an, BCMaterialsek New Materials for a Better Life! urteroko workshoparen edizio berri bat egingo du. Oraingo honetan, material kritikoak, materialek funtzionatu behar duten…Karolina Milowskarekin solasaldi gonbidatua (azaroak 6)
Gonbidatutako hitzaldi zientifikoen programak hitzordu berri bat izango du datorren azaroaren 6an, Ikerbasque Research Fellow ikertzaileak CIC nanoGUNE Karolina Milowskan egingo duen bisitarekin.…"BeZientzia": 200 ikasle zientzialari bihurtu dira egun batez
Urriaren 28an eta 29an "BeZientzia" azoka zientifikoa egin zen Bilbon. Bertan, Bizkaiko ikastetxeetatik etorritako Lehen Hezkuntzako 6. mailako 200 ikasle inguruk parte hartu zuten. BCMaterials lau…